第四百六十五章 干脆用石墨烯算了(2 / 6)

“相当于,一旦我们在极端气候下使用聚乙烯醇作为外骨骼设备的柔性材料,比如高温、潮湿的地形,故障率便会瞬间翻无数倍!”

“另外,聚乙烯醇的分子量和醇解度同样会大幅度地影响它的抗冲击能力。一般来说,分子量越大,醇解度越低,聚乙烯醇的抗冲击能力越高。但是分子量过大或醇解度过低,也会影响聚乙烯醇的柔性和加工性!”

“”

陆语将弊端缓缓地给大家讲述了一遍。

众人的脸色,瞬间变得复杂无比。

照这么说来,使用聚乙烯醇作为柔性材料的主题,风险确实是有些太大了!

“可”

苏晓晓犹豫了一下,继续道:

“这些问题,也并非无法解决吧?”

“比如,我们可以通过添加小分子铁电材料,提高聚乙烯醇的介电常数和储能密度。利用小分子铁电材料的自发极化能力,与聚乙烯醇材料原位结晶成膜,形成氢键偶极-电荷积累模型,可以直接地增强了复合薄膜的极化响应和电场耦合效应!”

“只要能制备出具有高介电常数(达到1000)和高储能密度(达到20j/3)的透明柔性聚合物薄膜,让它具有良好的力学性能和加工性能。”

“抗冲击力的问题,能够很轻松地解决啊!”

苏晓晓将自己脑海中的想法,直接说了出来。

“半对半错。”

陆语摇了摇头,笑道:“你说的确实没错,通过添加小分子铁电材料,确实能够在一定程度上提高聚乙烯醇的介电常数和储能密度。”

“但是,这种方式的局限性,一点也不小!”

小分子铁电材料的加入可能会影响聚乙烯醇的透明性和柔性,因为小分子铁电材料通常具有较高的折射率和较低的弹性模量!而且,小分子铁电材料的稳定性和相容性也需要进一步研究和优化。”

“即使确认了稳定性和相容性,也只能解决分子端的问题。”

“我提到的第一个问题和第二个问题,依旧没有办法解决。”

“那如果使用冷冻干燥和盐析法,直接去制备具有高强度、韧性和耐疲劳性的水凝胶呢?”

苏晓晓皱了皱眉,再度发问道。

“我们用冷冻干燥法在聚乙烯醇水凝胶中形成多孔结构,增加了水凝胶的比表面积和孔隙率,提高了水凝胶的吸水率和弹性恢复能力!”

“同时,再利用盐析法在聚乙烯醇水凝胶